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On the characteristic polynomials of Fibonacci chains 

Wolfdieter Langt 
lnstitut fiir ?heoretische Phyxik, UniversiUt KarlsNhe, Kaiserstrase 12, 
D-7500 KarlsNhe, Federal Republic of Germany 

Received 21 Autumn 1991, in final form 11 M a y  1992 

Abstract. Special diatomic Linear chains with elastic nearat-neighbur interanion and 
the WO m a s s  distributed according 10 the binav Fibonacci sequence are studied. 

1. Introduction 

>.e nfi$-rlime~sin~~! (ID) d&cre!e kbJb&nger qiz! in~ w:c;.th. 2 & c n f i t i ~ n ~ ~ s  nnasi- -I---- 

periodic potential of the Fibonacci type has been the subject of a large number of 
works following the original proposal of two groups [la, b] in 1983. At that time the 
physical motivation was to study a model intermediate between the regimes of periodic 
and random potentials in order to gain a better understanding of the transition from 
extended to localized states. From the mathematical point of view this model belongs 
to the class of almost periodic Schrijdinger operators [2a, b] which displays unusual 
spectral properties. In particular, it was found that for the Fibonacci Hamiltonian 
the support of the spectrum is a Cantor set of Zero Lebesgue measure, and that the 
spectral measure is of the purely singular continuous type [3a, b]. 

Because of the similarity of this tight-binding problem for an electron on a regu- 
lar chain subject to a quasi-periodic potential and the phonon problem for a quasi- 
periodic chain the Fibonacci model has also featured as a ID incommensurable crystal 
(for a review see [4a,bj). After the experimentai discovery of aiioys with crystallo- 
graphically forbidden symmetry in 1984 [SI and their theoretical interpretation as 
quasicrystals [6] the quasiperiodic binary Fibonacci sequence 1,0,1,  1,0,1,0,1,. . . 
was found to determine the spacings of layers of quasicrystals in certain directions. 
For reviews on quasiclystals see [7a-d]. The phonon problem for a ID Fibonacci qua- 
sicrystal [Sa, b] can be transformed to the problem of a periodic chain with nearest- 
neighbour harmonic interaction, one spring constant and two masses M and m 
arranged according to the binary Fibonacci sequence [9]. 

In this work we consider diatomic Fibonacci chains of three types: finite chains 
of N particles with k e d  or open boundary conditions, and infinite chains where a 
unit cell of N particles is repeated periodically. The characteristic polynomials of 
finite chains are shown to stem from two families of two-variable generalizations of 

for certain combinatorial numbers [lo]. The band structure of the infinite periodic 
N-chain is determined from the two-variable generalized TN Chebyshev polynomials, 

t Bitner address: BEM@DKAUNIZ. 

rhebyshev’s 3% po!ysn!!!iZ!s vhich %%re i!!tmduced ear!ier as generating f?lnctiCxs 
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which are also obtained from these generating functions. The two variables in the 
chain problem are the m a s  ratio r E M / m  and the (dimensionless) frequency- 
squared x = w2/2w,2, where WO" 5 n/m. 

The dispersion relation and the spectral density for periodic Fibonacci Nchains 
are given in terms of these generalized TN polynomials. In agreement with a general 
observation made in [ll] it is found that the two-variable polynomials S, and S,  
which generalize Chebyshev's S, polynomials are both systems of orthogonal p l y -  
nomiais in the variabie z when r & kept ked .  The explicit form of the measure 
is not known except for the monoatomic case, i.e. for T = 1. The T, polynomials 
are orthogonal in the variable I only for T = 1. The same statement applies to the 
characteristic polynomials of finite open chains. 

Usually, in works based on the binary Fibonacci sequence, only systems with N 
being a Fibonacci number (F,+2 = F,,, + F,, Fo = 0, F, = 1) are considered. 
This is because the transfer matrices then satisfy a simple composition law. Also, 
the infinite quasi-periodic system is usually taken as the limit of a periodic system 
by approximating the golden mean 'p ('p2 = 'p + 1, 'p > 0) by rationals ('p), = 
Fmt1/Fm. In this work we do not need the N restriction, and a theorem shows 
that the approximation of 'p by rationals is, as far as the band structure is concerned, 
equivalent to a treatment of periodic chains with Fibonacci N = F,,, unit cells. 

The quasi-periodicity of the binaly Fibonacci sequence entai!~ a large nnmhcr 
of identities among the various two-variable polynomials encountered in the chain 
problems. They are derived in section 4 . Some of them allow one to factorize 
polynomials; thus eigenfrequencies or band ends can be determined by the zeros 
of lower-degree polynomials. In section 5 a special type of identity, known to hold 
for the transfer-matrix trace polynomials T, in the monoatomic case, is examined 
for general T.  A criterion for the persistence of this identity for diatomic Fibonacci 
chains is given there. 

In section 6 the generating functions of the two-variable Chebyshev polynomials 
are considered. It is possible to derive formulae which express these polynomials in 
terms of ordinaly one-variable ones and powers of the difference of the two variables. 
For the chain problem these formulae provide the basis for a perturbative treatment, 
the expansion parameter being the relative mass difference X 1 - T.  The band 
structure ior periodic ciains with an iv'-particie unit ceii is computed to iowest non- 
trivial order in A. 

2. Fibonacci chains 

Consider longitudinal time-stationary vibrations of a linear chain with nearest- 
neighbour harmonic interaction. The displacement q,(i) = q, exp(iwi) of the 
nth particle (mass m,) from its equilibrium position z: z na satisfies the following 
set of difference equations for y, E mq,, lqnl/a Q 1 [12a-c]: 

(2.1) 2 
(Qn - )Y, + PnYn-l+ PntlYntl = 0 

where a,, E ( K ,  + n,,-,)/m,,, p,, E -~,,-~/d-, and K is the spring 
constant between particles numbered n + 1 and n. Fibonacci chaint[Y] are Special 
diatomic chains with the two masses M = m, and m = m, (mass ratio r M / m )  
distributed along the sites according to the rule 
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with 'p the golden mean, and LaJ the biggest integer less than or equal to the 
real number a. h(n )  is called the binary Fibonacci sequence. References are found 
in [lo]. In the following we shall discuss Fibonacci chains with the following boundary 
conditions and K ,  simplifications: 

(a) Finite N-particle Fibonacci chains with masses mh(,), n = 1 , 2 , .  . . , N, and 
N + 1 equal springs n, = K for n = 0 , 1 , .  . . , N, and fixed boundaries: 

90 = = qN+1 (2.34 

@) finite N-particle Fibonacci chains with masses mh(,,), n = 1,2,, . . , N and 
N - 1 equal springs IC, = K ,  for n = 1,2,. . . , N - 1 with both ends free: 

K O  = 0 = K N  (2 .W 

(c) infinite periodic chains with unit cell of length L = No consisting of N 
particles with masses mh(,) and N equal springs K, = K for n = 1 ,2 , .  . . , N .  This 
chain can be obtained from a finite one built from 2 M  such Fibonacci Ncells with 
periodic boundary conditions 

9 2 M N + i  = qi for all i 

in the limit M + CO. Mixed boundary conditions for finite chains could also be 
considered. For such type of chains the difference equations (2.1) reduces to 

9"+l+ 9,-1 - (2  - w 2 / w 3 4 ,  = 0 (2.4) 

with w: 3 rclm, = n/mh(,). In the case of open chains (b) one has Plyo = 
0 = flN+IyN+l in (2.1), a,  = n / m l , a N  = n / m N ,  and (24) holds only for 
n = 2,3 , .  . . , N - 1 whereas the n = 1 and N equations become 

(2.4') 

The following notation will be used: 

Y ( n ) = Z - w Z / w ; :  =h(n)Y+(l- h ( n ) ) y  (2.5) 

with 

Y E Z(1- PI) y E Z(1- .) (2.6) 

where z E w 2 / 2 w i  is the normalized frequency squared and we recall 1' E ml/mo = 
M/m. The SL(2, R) transfer matrix associated with system (2.4) is defined by 
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For the cases (a) and (c) this means 

which allows computation of q, in terms of the inputs q1 and q,,. In the open chain 
case @) one has 

( '?;:I) = M,R;' (t) n = 2 , 3 , .  . . , N  - 1 

92 = (y(1) - 1)ql '?N-1 = (Y(N)- l)'?,V. 

The Fibonacci matrix kord' M ,  = R,R,-,  . . . R ,  is found to be the SL(2,R) 
matrix 

where the polynomials S,(Y,y) and S,(Y,y) are defined by the following three- 
term recurrence relationt: 

s, = Y(n)S,-1- S,-Z s-, = o  so= 1 (2.114 
3, = Y ( n +  l)S,-, - 3n-2 s-, = 0 so = 1 (211b) 

with Y(n) given by (2.5). These two-variable generalizations of Chebyshev's S, 
polynomials were introduced in [lo]. There one can also find their explicit form and 
the combinatorial meaning of their integer mefficients. These polynomials appear as 
the numerator and denominator of the nth approximation to a continued fraction, 
namely 

(2.12) 

For monoatomic chains (T = 1) S, = S,, and both reduce to Chebyshev's ordinary 
polynomials (131 S,(y) = U,(y/2), with U,(cosQ)  = sin((n + l )Q]/s inQ pro- 
vided JyJ < 2. The trace-polynomials generalize Chebyshev's polynomials of the first 
kind, T,(cos 0) = cos ne, to two variables: 

Bansfer matrices R, of type (2.7) appear in other ID models based on the binary 
Fibonacci sequence. We show how to adapt the variables Y and y for some of them. 

First, there is the model of the 1~ discrete SchrGdinger equation with the quasi- 
periodic potential V, := V(ny.) at site number n of a periodic chain, where the 
periodically continued step function 

i f o g x < 2 - $ 0  
i f Z - y . < r < l  

V(z+ 1) = V(z) V ( x )  := ( ?  
t If one uses the S, murrence formula with the inputs S-1 = -1, So = 0, one finds S,+, = S ,  for 
n E N .  
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is used. In this case one should replace (2.6) by 

Y = E - V ,  y = E - V ,  (2.15) 

and the (shifted) energy E is measured in units of h2/2ma2, where m is the par- 
ticle mass and a the chain spacing. There exists a vast amount of literature on this 
Fibonacci Hamiltonian, based on [la,b]. Fbr more recent references with rigorous 
.-..a- Y..V LL." p V Y L  Y l  " L.A,,L",-LJp "yCCL'ulll "L U L Y  U Y W ~ U C  ' lN,PDYII l  JCC L-'",",. 

Besides this electronic tight-binding problem there is, secondly, the eigenvalue prob- 
lem of the ID Laplace operator, (A  + z ) 4  = 0, discretized on a quasi-periodic chain 
with two bond lengths A, and A, following the pattern of the binary h(n) sequence. 
This phonon problem of a 1u Fibonacci quasicrystal [SI is, by a change of the dy- 
namical variables, brought to the above-considered Schrodinger problem on a regular 
chain with quasi-periodic potential V, = -zA,(,) and E = 2. Here z is the reduced 
eigenfrequency squared. Now (2.6) has to be replaced by 

roeml+c l i b  thn nrnnf nf 0 P ~ n t n r  hr- I..P~+-..... -f -a-- 1 nlrahn..n -an-..-n -no r?n hl 

Y = 2(1 - " A , )  y =  2(1 -"A,) (2 16) 

with I E z / 2  The transfer matrix R, is identical to the one of the Fibonacci chains 
provided one puts A, = 1 and A, = P > 1. 

3. Fibonacci chain polynomials 

In this section the characteristic polynomials for the three types of diatomic chains 
(a), (b), and (c) defined in the last section are introduced. For the N-chain with 
both ends fixed, type (a), only the S, polynomials enter the problem. Due to the 
qNtl = 0 requirement one finds the eigenfrequencies from the zeros of 

Sj;)(z) := SN(2(1 -7z) ,2(1  -z)). (3.1) 

Also, qntl = S?)(z) q1 for n = 2,3 , .  . . , N - 1. The recurrence relation for these 
S; '( z j  poiynomiais derives from (2.11a): 
d., . 

z) sp(z) + s;Jl( .) = 0 S(') (.) - 2 ( 1 -  & n t U  n = 0 , 1 , .  . . (3.2) n t l  

with the inputs Sc? = 0, Sg)  = 1. 
Because the explicit form of the S,( Y, y)  polynomials is known in terms of certain 

combinatorial numbers ( n ; l , k )  (see [lo] for their definition) one could give such a 
form for the S?) polynomials as well. It suffices to notice here that S?)(O) = n + 1 
and the coefficient of zn  in Sr)(z)  is (-2)"7'("), with the sequence 

If one rewrites recursion formula (3.2) for the monic polynomials 

3p( .) := ( -2)-n7-+) S?)( .) 
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one linds the standard three-term form [14a, h] 

sp(.) = ( . - c ~ ! ) s ~ ~ ~ ( . ) - ~ ~ ) s ~ ~ ~ ( z )  n =  1,2 ,  ... 

s(7) -1 - - 0 
(3.4) sg" = 1 

J.) - - h ( n )  . f r >  - 1 -[?+b(n-?j!lc(')C(Pj 

with 

A; E i r  4 n n-1 ch = r 

where k ( n )  := h ( n )  - [I - h ( n  + l)]. This shows that for any T > 0 the Sc)(z) 
satisfy the necessary and sufficient conditions [14a,b] for an orthogonal polynomial 
system. Moreover, for any r > 0 

@(.) := .*(n+1)/2sp(.) (3.5) 
constitute a system of orthonormal polynomials with respect to some positivedefinite 
moment functional (or measure). Up to now we only know the weight function and 
the interval for the monoatomic case, i.e. for r = 1. The S?)(z) = S,[2( 1 - z)] = 
U,( 1 - z) are orthonormal polynomials in the interval [0,2] with weight function 
w ( z )  = 2 d n / 7 ~ .  The zeros of S:?l(~) are [13] 

r k  
n k = 1 , 2  ,..., n - 1 .  (3.6) &-I) = 1 - cos - 

The first few S?)(z) polynomials are listed in table 1. 

Tabk 1. S?)(z) ,  .d:j = 0, s'," = 1. 

" .d,')(z) 

1 2(1- 2r) 

2 4 r z 2 - 4 ( l + r ) 2 + 3  
3 -8r2z3+8r(r+2)z2  - 4 ( 2 + 3 r ) 2 + 4  

5 

6 

I L - 3 z 4 -  , < - 2 , 1 1 - . \ - 3 1 "  -111 1 , " - , - 2  *,I1 ,..I- I C  4 -.". \-'T.,' T-.\..T*"I," --\- 'TI.,*T> 

2[-16r3z5 + 16?(2r+3)z4 -4r(4rz +Zlr+ l i p +  
+4(9r2+16r+3)z2- (22r+13)z+3]  
64r'z6 - I28r3(r+Z)z5 + 16r2(4r2 +28r+23)r4+ 
- 3 2 r ( 6 r 2 + 1 7 r + 7 ) = 3 + 8 ( 2 4 r 2 + 3 3 r + 6 ) 2 2 - 8 ( 9 r + 5 ) 2 + 7  

For the open N-chain of type @) the solution (2.9) can be written ast 

q, = [Sr?l(z) - sn-2(z)]ql n = 2 , 3 , . .  . , N  

t ?he S ; ( z )  recurrence relation becomes with (Zllb). (2.5) and (2.6) 

Srjl(+Z(l -rhc-+Z)Z)Sc,"(Z)+S(I),(Z) = 0 

Sl;'=o $ ) = 1 .  

(3.7) 
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and the subsidiaty condition (assuming q1 # 0) 

results from the two possible ways to express qN--l  in terms of ql t .  
With the help of recursion relations (2.11) this condition reads 

B$)(,) I S$)(Z) - S$L1(2.) - [S$,,(Z) - Sl;,,(,)] = 0 .  (3.8') 

This polynomial equation of order N has a trivial solution 2' = 0 because g$)(O) = 
S$)(O) = N + 1. It describes the translational mode of the open N-chain with 
a uniform displacement q, = q1 # 0, n = 1,2,. . . , N. We are interested in the 
non-triviai soiutions of (3.gj, the internai ~bra t iona l  modes. if one defines 

B $ ) ( Z )  =: -22. P$l1(2.) (3.9) 

these internal N - 1 modes are given by the zeros of P$!l(z). Only for T = 1 do 
the Pp)(z) constitute a system of orthogonal polynomialsf. The hrst few of these 
polynomials are listed in table 2. 

29bk 2 Pgl(z), Prc;' = 0, PA') = r. 

1 - 2 r z + r + 1  
2 4 r 2 z 2 - 4 r ( l + r ) z + Z r + 1  
3 -8r3=3+8r2(Z+r)z2 -4r (Z+3r)z+ l+3r  
4 16r32' -8r2 (3r+5)z3+4r(2r2  +12r+7)z2  

5 

6 

-2(3r + 1)(2r +3)r  + 3 r  + 2 
2[-16r'z5 + 16r3(2r +3)z' - 16r2(? + 5 r +  3)s3 
+4r(8r2 + 15c+5)r2 -(4r+1)(4r +3)z  +2r + I] 
64r4z6 - 3Zr3(5r +7)z5 + 16rz(8rz +30r + 17)s' 
-8r(4rj + 4OrZ + 59r + 17)z3 + 8(8r3 + 30rZ + 22r + 3)z2 
-4(8? + 15r + 5)z + 3 + 4r 

... ... 

= ( 7 )  

= $r-'-'(*) > 0. Therefore, 
t n e  coefficient of z" in &I(=) is (-2)"rf("), where i ( n )  E r ( n  + 1) - 1. n e  monic S, 
polynomials =tis@ (3.4) with c(,.) -+ ?:) = Fh("tl), A',) - 
ik)(z) := rh(n+2)/2S?)(z) defines a set of orthonormal polynomials. 
t For n = 0,1, .  . . one has 

P(') "tl  (z) = Z ( 1 -  Th("+21z)Pg)(r) - P?j1(z) 

+ ( r -  l )c(n+ z)[$)(=) - 3 3 ( ~ ) 1  pg' 1 - 0  - p p  = r 

with c ( n f 2 )  := h ( n + 2 )  - h(n+ 1) 
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For periodic chains with an NFarticle Fibonacci unit cell (type (c)) the band 
structure is determined by the trace of the unit cell's transfer matrix M N  (see e.g. 
[U], chapter 3.4). M N  satisfies M,$ - ( t r M N ) M N  + 1 = 0. With (2.13) its 
eigenvalues are therefore (A,X- = 1) 

A, = TN i dT$ - 1 (3.10) 

with TN 5 TN(Y/2,y/2) and Y,y given in (2.6). Vibrations occur for those I- 
intervals (bands) satisfying lT$)(z)l < 1. In this case X E A, = 5- = exp ip ,  
with real p(Nv')(~) = cos-'T$)(z) which S the integrated spectral function. The 
differential spectral density (per particle) S then 

G(') ( j: ) = ( ; i ; F T ~ ) ( X ( N , ~ ) j : ) I X ( N , T ) / N I I J 1  d - [T,$)(X(N,r)?)]' (3.11) 

for j. z/X( N, v) out of any of the N bands whose maximal I value is X (  N, T). 

For T = 1 one recovers the (N-independent) spectral density of a monoatomic 
chain G$)(j:) = l/~,/-. This is due to the identity (d/dz)T?)(z) = 
- n S ~ ~ l ( ~ ) .  The band gaps are found from the condition lT$)(z)[ > 1, and the 
boundaries of the N bands are the solutions of 

T$)(z)  3 TN(l - r z , l -  I) = fl. (3.12) 

The explicit form of these polynomials in terms of certain combinatorial numbers, 
defined in [lo] can be given. We shall, however, not quote this result here. (213) 
shows that the leading coefficient of TP) is (-1)n2n-'~z(n) far n = 1,2 , .  . . . The 
fist few polynomials are listed in table 3. Only for P = 1 do they form a set of 
orthogonal polynomialst. 

The TP)(z) = T,(1 - I) are orthonormal in the interval [0,2] with weight 
function W(I) = 2 / r d m  for n E Nt. 

We remark that in the literature on quasi-periodic problems of the Fibonacci type- 
one usually considers the mth rational approximation to the golden mean, (q), := 
F,,,+,/F,, m = 1,2 , ,  . . , with the Fibonacci numbers F,. In this case the binary 
sequence 

h Y n )  := K. + 1)F,/F,+lJ - i.F,/F,+L (3.13) 

t Namely 

$21(z) = ~ ( 1 -  vh("+l)z)&'(z) 

e')(=) = 1 

(1 - r)=w(n+ I )S( !~~(=)  
n = 1 , 2 ,  . .  . 

7 p ( z )  = 1 - PZ. 

t For N = 2 (3.11) reproduces lhe spectral density of lhe A B c h a i n  (see e.g. [15], figure 1.6). For N = 3 
a mmparison with figure 1 of [16] has been made. There the abscissa label should read (w/uL,) '  which 
iS 212 in our notation for the AAB z ABA chain with r = $. We have also checked figures 2-5 of 
this reference. 
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'hbk 3. $ ) ( z ) .  

n $)(z) 

... 

1 
-rz + 1 
Z r i Z - 2 ( 1 + r ) z + 1  
- 4 r Z z 3 + 4 ~ ( r + 2 ) z 2  - 3 ( l + Z r ) z + 1  
8r32' - 8r2(3+r)z3  +ZLlr(r+ 1)z2 -4(1 +3r)z + 1 
-16Pz5 + 16r2(3+Zr)z' - 4r(4r2 +ZLlr+ l l ) z 3  
+4(8rz + 14r + 3)z2 - S(3r + 2)z + 1 
32r '~ ' -649(2+ r)r5+16r2(2r2 + 1 4 r + l l ) z '  
-32r(3~2+8r+3)z3+2(44r2+52r+9)z2  - 1 2 ( 2 r + l ) z + l  
... 

becomes periodic with period F,,,+,. The unit cell's transfer matrix is then ML'",)+, 
defined like in (2.8) but with h ( n )  in (25) replaced by h('")(n). These matrices 
differ, in general, from MFmtl, but one can prove the following: 

.Jm? I - - IF,+, m = l , 2 ,  ... . (3. i4) 

This result follows immediately from 

(3.15) 

where 0 means cyclic equivalence. For example, if m = 3 one has { l , l ,O}  0 
{ l ,  0, l ) ,  and for m = 1 ,2 ,4  both sequences are identical. In fact, the identity holds 
for all even m. Ebr odd m # 1 a cyclic rearrangement is necessary. The proof of 
(3.15) will not be reproduced here. It is found in the preprint version of this work. 
Due to the identities (3.14) the band structure of type-(c) Fibonacci chains coincides 
with the one of periodic chains based on the sequence / ~ ( ~ ) ( n )  with n E Z and - .. .c .-. ..-.. 1, - m t IT U UnC SpCCldIlzCS i V  = Fmtl. 

4. Identities from quasiperiodicity 

One of the distinguished properties of the binary Fibonacci sequence h( n) (2.2) is 
(see e.g. [3a]) 

Vk 2 4 : h ( n  + Fk) = h ( n )  1 < n < Fk . (4.1) 

The same quasiperiodicity law is obeyed hy the Y(n) sequence defined in (2.5). An 
immediate consequence of (4.1) is the matrix identity 

V k  3 4 : M,,, = (M,)' (4.2) 

where M ,  was defined in (2.8). This, together with the det M,, = 1 condition and 
the '2'" polynomials (2.13), is equivalent to the following four identities, valid for all 
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k = 4,5,. . . : 

where the arguments of the S and S polynomials are Y,y and those of the T 
polynomials are Y/Z, y/2. The last two identities can be used to factorize certain 
S, and Sn polynomials. (4.36, d )  are also valid for k = 2,3. Quasiperiodicity (4.1) 
also implies 

V k  2 4 n = 1 , 2 , . . . , F k :  S,+pk = Y ( n ) S n + ~ k - ~ - S n + ~ k - 2  (4.44 

Vk 2 4 

Putting n = Fk in (4.4a), using (4.3a) and ( 4 3 9 ,  yields for k > 4 
= 0 , 1 , .  . . , Fk - 1 : s,+, = Y ( n  + l )Sn+pk-l  - S , + F ~ - ,  . (4.4b) 

= TFksFr-a + ' 

Putting n = Fk - 1 in ( 4 . 4 ~ )  produces for k 4 

(4.5) 

which shows that they are, for each k 2 4, also two-variable generalizations of 
Chebyshev's S, polynomials. For (4.7) one only needs S!jk' for n = 1,2, .  . . , Fk -3. 
We give an example for k = 5, Si5) = Y = S,, Si5) = Y a  - 1. Thus 

SI, = 2T5 S, - 1 

S, = 2T, S, 

s, = 2T5 s, + 1 
S,= 2T5 Sa+ SI 

S, = 2T5 SI + (Ya - 1 )  

(4.9) 
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Similarly, one derives from (4.46), together with the inputs (4.36) and (4.34, the 
following family of identities: 

k 2 4  j = 1 , 2  ,..., F k : S a F ~ _ , = 2 T ~ ~ ~ F ~ - , + S , - a  (4.10) 

with the ‘retro’ Sik1 polynomials defined by 

(4.11) 

Only the ones with 7~ = 1,2, .  . . , Fk - 2 are needed in (4.10) for given k 2 4. 

From (4.7) and (4.10) the following identities among the T,s result: 
(4.11) defines more two-variable generalized S, ( y)  polynomials. 

k 2 4  j = 0 , 1 ,  ..., F k - 2 : 2 T F k 2 T ~ F h - j , = 2 ( T z F k - , + T j ) - ( Y - y ) R j - l  { I . )  

(4.12) 

with the ‘excess’-polynomials 

(4.13) 

defined by 

One should remember that the arguments of all polynomials are Y,y except for 
the T,s whose arguments are Y/2, y/2. For vanishing excess-polynomials R the 
identities (4.12) are of the type 

2Tn 2 T m  = 2(T,+, + qn+) (4.15) 

well known for the one-variable T,, polynomials (trigonometric identities). This is, 
for instance, the case for j = 0, when Ritl  = 0 for all IC 2 4. Thus 

TZFk + = 2 ( T F k ) 2  (4.16) 

which can be rewritten as 

Tapk - 1 = 2 ( T r ,  - l ) (Tpk + 1 ) .  (4.16‘) 

These two equations show that N = 2Fk  chains of type (c) for k = 4 , 5 , .  . . have 
a band degeneracy. Indeed, the Fk zeros of TFk are double (-1) values of TaF,. 
Thus Fk gaps shrink to a point, and the 2 F k  values (+1) of Tzn coincide with 
the edges of the Fk bands of the N = Fk chain of type (c). Therefore the band 
structure for N = 6,10,16,. . . chains is the same as the one for N = 3,5,8,. . . 
chains, respcctivc!y. In pzch the unit e.!! ~ d_nuh!ed, describing the s m p  &in. 

For j = 1 one has 

for k = 2 i  i > 2  
for k = 2 i  + 1 i > 2  

= i { k l  = 
0 
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due to the fact that h(FZi)  = 1, h(F,,+,) = 0. Therefore, 

i = 1 , 2 , , . ,  :2Tfi, 2Tr;,-1=2(Tzfi,-1 tT,). (4.17) 

For i = 1 this is trivial. For odd k 2 4 there is an excess of -(Y - y). 
For j = 2 one finds 

k 2 4 :  2Tph 2Tpk-, = 2(T2ph-2 + T2) (4.18) 

due to the fact that Fk a n  never be the bigger member of an A-pair (see [IO] for 
the definition). 

The analysis of three ronsecutive {h(n)) members, the last one being k(F,),  
shows that also for j = 3 no excess polynomial is present, i.e. 

k > 4 : ~ T F ~ ~ T F ~ ~  = ~ ( T z F ~ ~  + T3). (4.19) 

For higher j the analysis becomes more involved. AI1 the above derived identities 
hold for all Y, y, therefore especially for chains with substitution (2.6). 

Identities for the open N + 1 chain polynomials I$' follow from the results (4.7) 
and (4.10). One has 

k 2 4 ,  j = o , I , . . . , F k - 2  : P.$~-j-1(~j=2$)(~) P p A - j - l ( ~ ) f ~ j - l  (r) 
l .)fk)(x) 

(4.20) 

with the definition 

( - 2 . ) p ! ' " y z )  > - I  := (Sy; - sy; - .y; +. 3jkJ)II (4.21) 

where ( 1  signals substitution of Y,gl according to (2.6). Fur j = 0 one finds 
= 0, which shows that the eigenfrequencies of the 2Fk - 1 internal vibra- 

tions of the open N = 2Fk chain are for it. = 4,5,. . . given by those ol the N = Fk 
chain and the zeros of Tg) .  

5. Identities from logotomy 

In the seminal works [la, b] the identities 

2 ' T F ~  = 2 T F ( k - ~ ~  T F ( t - q  - 'F(,-J) (5.1) 

were used as recursion relations for the Fibonacci-numbered trace polynomials. This 
is a special case of a more general class of identities which can be inferred from the 
basic formulae valid for any SL(2,R) matrices A,  P, Q (cf [%I): 

t r A  = t r  A-' (5.247) 
$ t r ( P Q j + + t r ( P Q - ' )  = 2 ( $ t r  P)(itr Q) .  (5.2b) 

In fact, (5.21) follows from ( 5 . 2 )  by putting P = 1. Observe the symmetry P ,+ Q. 
Consider the matrix-'word' M ,  defined in (2.8) for n 2 1 over the two matrix 
'alphabet' & and R,, given in (2.7), and put MO = 1. The word Mn+" is cut 
into two pieces M,,, = W , M ,  or M,,+,,, = WmMn,, where W,, is a word of 
length n. The identity (4.15), which reduces to a simple trigonometric identity in the 
one-variable case Y = y, also remains valid in the two-variable case whenever one 
of the following conditions is satisfied: 
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Condition 1. 

Mncm = W ,  Mm 

w, 0 Mn (5.3a) 

n 2 m 2 0 

Wn(Mm1-l O Mn-m 
Condition 2. 

M,+,,, = WmMn n 2 m 2 0 

w, 0 Mm (5.36) 

Mn(Wrn1-l O Mn-m.  
?he symbol 0 stands for cyclic equivalence. Note that . (Mm)-l .... or (Wm)-l are no 
words in the sense defined above: In order that the last conditions in'(5.%, b) be 
satisfied it is necessaly that all R;' and R;' matrices are eaten up by corresponding 
R, and RI matrices. The proof is a simple consequence of identity (5.2b). For the 
first condition put P = W,, , Q = M,,,, and for the second one P = W,, Q = M,, 
with t r  PQ-I = t r  QP- l .  We give three examples. First consider the case m = n. 
Both mnditions need W, = M,. Therefore, (4.15) holds whenever M,, = (M, , )2 .  
From the quasiperiodicity of the { h ( n ) }  sequence this happens exactly for n = Fk 
for k > 4. Thus we recover identity (4.16); secondly consider MFt = AdFh-% MFk- ,  
which holds for k = 2, and 2 4, and check (5.36): 

MFh-,(MFk-2)-1 = MFI-3MFt- . (MFk-2)-1 = Mpk-,  = M ( F I - I - F I - . )  

for k = 3 or 2 5. This is how the original identities (5.1) are proved. As a lhird 
pm.mp!c clkc 3 = 6 2nd v. 2 2nd check cofiditicn I5 ,-.-I. U\ ..-~ M .  = - W. ... L-.-s M. 2nd W. . . ~  = - 
RIR,  0 R,R, = M,; M s (  W2)-' = R,R,R~R,R,R~'R;' 0 RtR,R, = M4, 
and therefore 

TsTz - f(T, + T4) = 0 

2Tn T2 - (T,+, + Tn-,) = 0 

(5.4) 
which is not covered by the identities given in the last section. This is, in fact, a 
special case of 

valid if n + 1 or n is of the form B ( B ( p ) )  + 1 for some p E N, where the Wythoff 
sequence is defined by B(n) = Lnq2] (see e.g. [lo]). The first values are n = 
5,6,13,14,18,19,. . . . 

We close this section with the quantity which was used in the original works [la, 
b] as an 'invariant' under recursion formula (5.1). We use the form given in [3a]: 

(5.5) 

X 2 ~ t t r M F . + , M F , M ~ ~ t , M ~ ~ -  1 

= g t r  [ M F n r M F . t , l z =  t t r ( M F " [ M F , + , . M F . + . I )  

=T;,+ +TintL +Tim -2TF.+,TF.+ITF. = ~ ( Y - Y ) ' .  (5.6) 
This shows the n-independence of X z  for all n 2 2. (5.B) and the composition 

law MFm+> = MFm_, MFm for n 2 3 were used. (5.1) and the quasiperiodicity 
identity (4.16) allows one to rewrite Xz as 

for n 2 3 which can also be obtained Via (4.12) for k = n + 3, j = 2F,,+,. 
x2 = -TF.+~ TF. + i ( T z F . + .  + T2F.+L) = t(Y - Y)' (5.7) 
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terms of { S k }  
6. Generating functions for S, and S ,  polynomials; S,(Y,y) and S,(Y,y) in 

We first define the generating function for the S,( Y, y) polynomials 

The recurrence relation (2.11~) yields 

G(z;Y,Y)= { ~ + ( Y - Y ) ~ G ( A - I ) ( ~ ; Y , Y ) } / ( ~ - Y ~ + ~ ~ )  (6.2) 

where the generating function for a subsequence of the S,s is introduced, namely 

In the last step we used a property of {h(n)} ,  namely h(n )  = 1 iff n = A(1) 
for 1 E N, where A-numbers are defined by A(1) := LZq] (see [lo] for details 
on Wythoff numbers A(1) and references). Therefore, G(,-]) generates S, for 
~ - n , 7  2 < 7 II +A nhhtnin , " - u I , " ) ~ ) , , v  ) . . . .  ....\ .,.-, * Y..,.,.,"... AQ 2 r h w k  we nnt in IC. 3\ V = 

D1 
G ( ~ ; y ) = ( l - y z + + ~ ) - ~ =  zS,(y)z"  

n=O 

the well known generating function for Chehyshev's S,(y) polynomials. Due to 
identities for Wythoff sequences (see e.g. [lo], equation (2.5)) one can also write 

G(A-i)(ziYt~) = GB(+;  Y ~ Y )  + GAB(z;Y,Y) (6.5) 

where G, generates all S, with k = B(m)  := m + A(m) for m E No, Le. 
k = 0,2,5,7,. . . , and GAB generates all S, with k = A ( B ( m ) )  for m E N, Le. 
k=3,8,11,16, ... . Indeed, A(1)-liseitheroftheformA(A(m)+l)-l=B(m) 
with m E Ne: or of the form A ( B ( m )  + 1) - l = A B ( m )  with m E N. This holds 
because the natural numbers decompose into two disjoint and exhaustive sets, the A- 
and B-numbers. Because G = G, + GB=G,, + GAB + G, where we include, 
by convention, 0 as a B-number, (6.5) can be written as G(,-,)=G- GAA. Due to 
G,, = G(,-]) one may then replace (6.2) by 

G(z; Y,Y) = {1 - ( Y -  Y)zG(B-i)(z; Y ,Y)}G(~ ;Y) .  (6.5') 

In a similar way one derives from (2.11b) the result 

G(Z; y,Y) = {1 ( y  - Y)zG(~-z)(z; Y,Y)}G(z; Y) (6.6) 

G(t;Y,y) := C S , ( Y , y ) z "  (6.7) 

for the generating functions 
m 

"=O 
m m 

G(A-~(z ;Y,Y)  := C h ( n + 2 ) S , ( Y , y ) ~ "  = C S A ( ~ ) - ~ ( Y , Y ) ~ ~ ( ' ) - ~ .  (6.8) 
n=O 1 3  
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We continue with formulae which express the two-variable Chebyshev polynomials 
S,,(Y,y) and S,(Y,y) in terms of ordinary Chebyshev polynomials S k ( y )  and 
powers of Y - y. They can be. derived from (6.2) (respectively (6.6)). We skip all 
details and only quote the result which involves r ( n )  which counts the number of 
(positive) A-numbers less or equal to n. It is given by (3.3) as r ( n )  = A ( n  f 1) - 
(n + 1). 

Forn=(O,) 1,2, ... one finds 

(6. loll) 

(6.1ob) 

For k = 1 the product should he replaced by 1. For n = 0,l only the first term of 
(6.1Oa) is present. We next quote the results for the T, polynomials (2.13). Their 
generating-function is relatedto those of the S and S po$nomials: 

=(n+l)  k - 1  lJ - i -1  

;n,k(Y) s%t l -A( lo ) (Y) (  sA(I,-l)-I-A(I,)(Y) 
l o = k + l  ,=I l,=k-j+l>z 

s A ( l k + l ) - 2 ( Y ) .  

1 m 

GT( r ;  Y,  y)  := T,, (:, $) 2' = 2[1 + G( 2; Y, y )  - r2G( z ;  Y, y)] . (6.11) 
n=O 

Using (6.10) and (6.11) one finds 

(6.12) 

t,, ,(Y) Z [ % , m ( Y )  1 - & - z , * ( Y ) l .  (6.12b) 

In the appendix the results for n = O( 1)6 are listed. 
This polynomial expansion in powers of Y -y  has an interesting application in the 

case of Fibonacci chains of type (c). For small relative mass difference p 1- M/m 
one can compute the 2N band boundaries in lowest non-trivial order. Details will be 
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published elsewhere. We quote the result which is given in terms of the quantities 
f ( N , k ) ,  k = 1,2, .  . . , N - 1 defined by 

(6.13) 

and 

Up to hrst order (indicated by the tilde) in p E 1-r, the band boundaries of periodic 
chains with an N-particle unit cell are are given by 

for k = 1,2, . . . , N - 1, vhN'r) = 0 and the maximal band value 

(6.15) 

(6.16) 

<f-' are the zeros of SN-,[2( 1 - I)] given by (3.6). 
Observe that f (  N, k) obeys 

I (6.17) N 
f (N,1 )  = f ( N , N - l )  1 = 1 ,2  ,..., IA 

L - J  

Due to this symmetry and the fact that E I N - l )  +E!$-;') = 2 for the given values of 
1 ,  one finds for the total bandwidth of periodic chains with N-particle unit cell of the 
Fibonacci type (in units of I = w2/2wi  and first order in p E 1 - T )  

N = Z m  m E N :  

I 

(6.1%) 

m 
Azm+, = 2 [ i - ' ( z m + i ) ( 2 / ~ ~ ~ W ( 2 m + l , k ) - ~ ) ] .  (6.186) 

k = l  2 m + 1  
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7. Concluding remarks 

(i) The spectral measure for the orthogonal polynomials St)(z)  and the associated 
ones .!?p’(z) can, for fixed T ,  in principle, be found via Stieltjes’ inversion formula 
(cf [ll] and [17]) from the continued S-fraction related to the recurrence. relation. 
Work along these lines is in progress. 

(ii) The limit N -t 00 for the various chains can be studied, and it is expected 
to recover the rigorous results for the Fibonacci Hamiltonian mentioned in the intro- 
duction. 

In the application for chains with small relative mass difference the first two 
terms of f ( N ,  k) given by (6.13) do not contribute to W ( N , k )  of (6.14) for k = 
1,2, . . . , N-1 in this limit. For the last term, the double sum fds(N, k), it is difficult 
to find a sensible estimate. 
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Nofe added k poet One of the referees pointed out referena (181. There one a n  6nd an a a l l e n t  
summaty of the method of orthogonal polynomials in mnnection with secondader difference equations 
with periodic mefficients. In the general discussion one a n  identify the polynomials U” and P./ig 
with our monk 5, and S.-,. The polynomials BN are not directly related lo our TN of (2.13). Hk 
stress that the TN polynomials (not the 6 ~ )  are relevant for the chain problem. Our formula (3.11) 
for the differential spectral density is similiar lo equation (2.9) of [la]. I h e  measure for the Nperiodic 
orthogonal polynomials {sc,’)} a n  be mmputed along the lines leading to (5.10) of [la]. None of the 
uamplPs mnsidered there mmsponds lo the Fibonacci chains. 

- 

Appendix. Some T,(Y /2,y/2) formulae 

Equation (6.12) with (6.96) and (6.1ob) yields ( S , ( y )  1) 

n = 0, z ( 0 )  = 0 : 

n = l , r ( l )  = 1 : 

n = 2 ,  z ( 2 )  = 1 : 



+ f ( Y  - Y ) 2 [ s f ( Y )  + 2S,(Y)] + f ( Y  - y)3S1(y) 

= fY3y - (YZ+ Yy) + 1 

n = 5 , 2 ( 5 )  = 3 : 

Y Y  T 5 ( - -  > 2 )  = T  5 (;) + ;(Y - Y )( s4 + s; + s3S1 - s: - S,) 

+ f ( Y  - Y)2(3S2S, - SI) + f ( Y  - Y)3Sf 

= + Y ~ ~ ~  - ( 2 ~ ~ ~  + fyY2) + ($Y + y) 

n = 6,246) = 4 : 

+ f ( Y  - Y)2(2s3sl  + 3s; + s4 - Sf) 

+2(Y-Y)3s2s1+f(Y-y)4s:  
- 1 y 4  2 - Y - ( 2 ~ ~ ~  + y Z y 2 )  + ( Z Y ~  + Z Y ~  + i Y 2 )  - 1 ,  

The missing S, arguments are always y. 
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