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Abstract. Special diatomic linear chains with elastic nearest-neighbour interaction and
the two masses distributed according to the binary Fibonacci sequence are studied.

1. Introduction

The one-dimensional (1D) discrete Schrédinger equation with a discontinnous quasi-
periodic potential of the Fibonacci type has been the subject of a large number of
works following the original proposal of two groups [1a,b] in 1983. At that time the
physical motivation was to study a model intermediate between the regimes of periodic
and random potentials in order to gain a better understanding of the transition from
extended to localized states. From the mathematical point of view this model belongs
to the class of almost periodic Schrédinger operators [2a, b] which displays unusual
spectral properties. In particular, it was found that for the Fibonacci Hamiltonian
the support of the spectrum is a Cantor set of zero Lebesgue measure, and that the
spectral measure is of the purely singular continuous type [3a,b].

Because of the similarity of this tight-binding problem for an electron on a regu-
lar chain subject to a quasi-periodic potential and the phonon problem for a quasi-
periodic chain the Fibonacci model has also featured as a 1D incommensurable crystal
(for a review see [4a,b]). After the experimental discovery of alioys with crystalio-
graphically forbidden symmetry in 1984 [5] and their theoretical interpretation as
quasicrystals [6] the quasiperiodic binary Fibonacci sequence 1,0,1,1,0,1,0,1,. ..
was found to determine the spacings of layers of quasicrystals in certain directions.
For reviews on quasicrystals see [7a—d]. The phonon problem for a 1D Fibonacci qua-
sicrystal [8a,b] can be transformed to the problem of a periodic chain with nearest-
neighbour harmonic interaction, one spring constant and two masses M and m
arranged according to the binary Fibonacci sequence [9].

In this work we consider diatomic Fibonacci chains of three types: finite chains
of N particles with fixed or open boundary conditions, and infinite chains where a
unit cell of N particles is repeated periodically. The characteristic polynomials of

finite chains are shown to stem from two families of two-variable generalizations of

Chebyshev's S, polynomials which were introduced earlier as generating functions

for certain combinatorial numbers [10]. The band structure of the infinite periodic
N -chain is determined from the two-variable generalized T, Chebyshev polynomials,
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which are also obtained from these generating functions. The two variables in the
chain problem are the mass ratio » = M/m and the (dimensionless) frequency-
squared z = w?/2%w?, where w? = x/m.

The dispersion relation and the spectral density for periodic Fibonacci N-chains
are given in terms of these generalized T, polynomials. In agreement with a general
observation made in {11] it is found that the two-variable polynomials S, and S,
which generalize Chebyshev's S, polynomials are both systems of orthogonal poly-
nomials in the variable = when r is kept fixed. The explicit form of the measure
is not known except for the monoatomic case, i.e. for » = 1. The 7T, polynomials
are orthogonal in the variable z only for r = 1. The same statement applies to the
characteristic polynomials of finite open chains.

Usually, in works based on the binary Fibonacci sequence, only systems with N
being a Fibonacci number (F, ., = F, ., + F,, F; =0, F, = 1) are considered.
This is because the transfer matrices then satisfy a simple composition law. Also,
the infinite quasi-periodic system is usually taken as the limit of a periodic system
by approximating the golden mean ¢ (2 = ¢ + 1, ¢ > 0) by rationals ()., =
Fo 41/ F,,. In this work we do not need the N restriction, and a thcorem shows
that the approximation of ¢ by rationals is, as far as the band structure is concerned,
equivalent to a treatment of periodic chains with Fibonacci N = F, _, unit cells.

The quasi-periodicity of the binary Fibonacci sequence entails a large number
of identities among the various two-variable polynomials encountered in the chain
problems. They are derived in section 4 . Some of them allow one to factorize
polynomials; thus eigenfrequencies or band ends can be determined by the zeros
of lower-degree polynomials. In section 5 a special type of identity, known to hold
for the transfer-matrix trace polynomials T, in the monoatomic case, is examined
for general r. A criterion for the persistence of this identity for diatomic Fibonacci
chains is given there.

In section 6 the generating functions of the two-variable Chebyshev polynomials
are considered. It is possible to derive formulae which express these polynomials in
terms of ordinary one-variable ones and powets of the difference of the two variables.
For the chain problem these formulae provide the basis for a perturbative treatment,
the expansion parameter being the relative mass difference A = 1 — r. The band
sttucture for periodic chains with an N -particie unit cell is computed to lowest non-
trivial order in A,

2. Fibonacci chains

Consider longitudinal time-stationary vibrations of a linear chain with nearest-
neighbour harmonic interaction. The displacement q,(t) = g, exp(iwt) of the
nth particle (mass m_) from its equilibrium position z = na satisfies the following
set of difference equations for v, = /M, 4q,, |g,|/a € 1 [12a—<]:

(an - w2)yn + Bnyn—l + ﬁn+1yn+1 =0 (2'1)

where a, = (k, + k,_1)/my, By = K, f/M, M, 1, and «, is the spring
constant between particles numbered n 4 1 and n. Fibonacci chains |9 are special
diatomic chains with the two masses M = m, and m = m, (mass ratio r = M /m)
distributed along the sites according to the rule

My = My(n) h(n):=[(n+1)/¢] - In/e] 22)
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with ¢ the golden mean, and [« the biggest integer less than or equal to the
real number «. h(n) is called the binary Fibonacci sequence. References are found
in [10]. In the following we shall discuss Fibonacci chains with the following boundary
conditions and «, simplifications:

(a) Finite N-particle Fibonacci chains with masses my,y, n=1,2,..., N, and
N + 1 equal springs ., = « for n =0,1,..., N, and fixed boundaries:

9 =0=qn; (2.3a)

(b) finite N-particle Fibonacci chains with masses m,,y, n = 1,2,...,N and
N —1 equal springs x, =k, for n =1,2,..., N — 1 with both ends free:

(c) infinite periodic chains with unit cell of length L = Na consisting of N
particles with masses m,,, and N equal springs x,, = « for n = 1,2,..., N. This

chain can be obtained from a finite one built from 2M such Fibonacci N -cells with
periedic boundary conditions

Gamnyi = G for all

in the limit M — oo. Mixed boundary conditions for finite chains could also be
considered. For such type of chains the difference equations (2.1) reduces to

Q1+ @y —(2-w?/wi)g, =0 (2.4)
with w2 = x/m, = &/my(,). In the case of open chains (b) one has Gy, =

0 = Bnpyngs I ), o = &/my,ay = xf/my, and (2.4) holds only for
n=2,3,...,N —1whereas the n = 1 and N equations become

7 = (1 -w?/wh)g

2.4)
anog = (1 - w?fwfny)an -
The following notation will be used:
Y(n)=2-w?/wl =h(n)Y +(1-h(n))y (2.5)
with
Y=2(1-rz) ¥y=2(1-zx) (2.6)

where z = w? /2w is the normalized frequency squared and we recall r = m, /m, =
M /m. The SL(2, R) transfer matrix associated with system (2.4) is defined by

()= (& )= (" T () @7
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For the cases (a) and (c) this means

. Qn+] e q — (1'1
( o )_RﬂRn_l...Rl(qo) =M, (%) (2.8)

which allows computation of q,, in terms of the inputs g, and g,. In the open chain
case (b) one has

(Qn+1)=MnRi’1 (32) n=23,...,N-1
n 1 (29)

g =(Y(1)-1)q gy = (Y(N)-1)qy.
The Fibonacci matrix ‘word” M, = R_R,_,... R, is found to be the SL(2,R)

matrix
S -8
M, = n A"-l) 2.10

i (Sn—l —Sn—Z ( )

where the polynomials S_(Y,y) and S, (Y, y) are defined by the following three-
term recurrence rejationj:

Sp=Y(n)S,_1—S,_, 5.,=0 So=1 (2.11a)
S,=Y(n+1)5,_,-5,_, $,=0 g, =1 (2.11b)

with Y (n) given by (2.5). These two-variable generalizations of Chebyshev’s S,
polynomials were introduced in [10]). There one can also find their explicit form and
the combinatorial meaning of their integer coefficients. These polynomials appear as
the numerator and denominator of the nth approximation to a continued fraction,
namely

1] 1 | 1| Sus

TR T ToTE U ToT— = e 212

Y V@ T Im TS, R
For monoatomic chains (r = 1} S, = 5, and both reduce to Chebyshev’s ordinary
polynomials [13] S, () = U,(y/2), with U_(cos ©) = sin[(n + 1)@}/ sin @ pro-
vided |y| < 2. The trace-polynomials generalize Chebyshev's polynomials of the first
kind, T, {cos @) = cos n@©, to two variables:

v

Y 1 4
T, (% %) =51 M, = 2[5,(Y,3) = $,5(Vow)l- (2.13)

Transfer matrices R, of type (2.7) appear in other 1D models based on the binary
Fibonacci sequence. We show how to adapt the variabies Y and y for some of them.

First, there is the model of the 1D discrete Schridinger equation with the quasi-
periodic potential V,, := V(n¢) at site number n of a periodic chain, where the
periodically continued step function

W foge<2—¢

Viz) :={V1 f2-wge<l V(iz+1)=V(z) (2.14)

t If one uses the Sy, recurrence formula with the inputs S_; = ~1, Sp = 0, one finds Sp41 = 5, for
neEN.
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is used. In this case one should replace (2.6) by
Y=E-V, y=E-V, (2.15)

and the (shifted) energy F is measured in units of A2 /2ma?, where m is the par-
ticle mass and a the chain spacing. There exists a vast amount of literature on this
Fibonacci Hamiltonian, based on [1a,b]. For more recent references with rigorous
recnlte lilka tha nrnnf nf o Mantnr_funa cnantram nf oasn | ahaasnas mananea asa [0 hl
lwu-lm un\.'- (S ey IJIUUI.'UI ‘f-l \-/ﬂll.lul. I.J'IJU BPUDI.A Uil VLR LY wuwsuo IIVadul v v l-JGl,U_I-
Besides this electronic tight-binding problem there is, secondly, the eigenvalue prob-
lem of the 1D Laplace operator, (A + z)¢ = 0, discretized on a quasi-periodic chain
with two bond lengths A, and A, following the pattern of the binary h(n) sequence.
This phonon problem of a 1D Fibonacci quasicrystal [8) is, by a change of the dy-
namical variables, brought to the above-considered Schrédinger problem on a regular
chain with quasi-periodic potential V,, = —z X, and E = 2. Here z is the reduced
eigenfrequency squared. Now (2.6) has to be replaced by

Y =2(1-zX) y=2(1—-=zX,) (2.16)

with £ = 2/2. The transfer matrix R_ is identical to the one of the Fibonacci chains
provided one puts A\py=1and A\, =r > 1.

3. Fibonacci chain polynomials
In this section the characteristic polynomials for the three types of diatomic chains
(a), (b), and (c) defined in the last section are introduced. For the N-chain with

both ends fixed, type (a), only the S, polynomials enter the problem. Due to the
gn41 = 0 requirement one finds the eigenfrequencies from the zeros of

S (2) := $5(2(1 ~ r2),2(1 - x)). 3.1)

Also, g, ., = Sﬁf)(;c) g, for n =2,3,..., N — 1. The recurrence relation for these
ng}(:c) polynomials derives from (2.11a):

Sﬁ?l(‘r) —2(1 — PP ) 52y + ST (2) = 0 n=0,1,... (3.2)

with the inputs SV} =0, 5§ =1.
Because the explicit form of the S, (Y, y) polynomials is known in terms of certain
combinatorial numbers (n;f, k) (see [10] for their definition) one could give such a

form for the S polynomials as well. It suffices to notice here that SS,')(O) =n+1
and the coefficient of z* in S{ (&) is (—2)™r=(™), with the sequence

z(n):= Zh(m) =|(n+1)pl-(n+1). (3.3)

If one rewrites recursion formula (3.2) for the monic polynomials

S(z) := (—2)~"r= =M S (&)
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one finds the standard three-term form [14a, b]

§0(2) = (2= {8 (2) - ADE(x)  mn=1,2,...

(3.4
S{_? =0 S‘()r) =1
with
r) = p=hin) A = L-[14k(a—1)11 () (1)
Cp =T An :ZT‘ ch Chlq

where k(n) := h(n) — [1— h(n + 1)]. This shows that for any ~ > 0 the S57(z)
satisfy the necessary and sufficient conditions [14a,b] for an orthogonal polynomial
system. Moreover, for any r» > 0

s (z) 1= PP /2807 () (3.5)

constitute a system of orthonormal polynomials with respect to some positive-definite
moment functional (or measure). Up to now we only know the weight function and

the interval for the monoatomic case, i.e. for r = 1. The S{7(z) = S.[2(1 - z)] =
U,(1 — =) are orthonormal polynomials in the interval [0,2] with weight function

w(z) = 2y/z(2 — z)/ . The zeros of S, (x) are [13]
fgc"_l)=1—cos %k k=1,2,...,n-1. (3.6)

The first few S$(a) polynomials are listed in table 1.

Table 1. S5 (2), 810 =0, 87" =1

n o S(2)

1 2(l-z7)

2 drz? —4(14 1)z +3

3 —8r2z? 4 8r(r+2)22 - 424 3r)c +4

A 16w md _ 1£02(7 L o33 L Acf 11 L 1NV 2 A1 L Tl L &
4 1678z = 1672 (34t Mz +4r (11 4+ 1072 - 434 M)z + S
5 2A-1673z5 + 16r2(2r + 3)z* — 4r(4r? + 2{r + )23+

492 4 16r + 322 — (2r 4 13)z 4 3]

6 64rie® — 12878 (r 4 2)2% 4+ 1602 (4r2 4 8r 4+ )24+
—32r(6r2 + 17r + 7Nz + 8(Ur? + 33r +6)22 —8(9r +5)z + 7

For the open N-chain of type (b} the solution (2.9) can be written as{
4, = [Sgrzl(x)_gs:‘—)z(z)]ql n=2,3,...,N 3.7
t The S7(x) recurrence relation becomes with (2.115), (2.5) and (2.6)

&0

) (2) - 200 = PH D 5) 80 (2) + 80 (2) = 0

S'f_r]} =0 S’gr) =1.
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and the subsidiary condition (assuming q, # 0)
Y (M) - 1)(SKL, - 8§25) = SKL, - Sia G9)

results from the two possible ways to express gp;_, in terms of g, 1.
With the help of recursion relations (2.11) this condition reads

B (2) = SP(z) = S, (2) - [S0),(2) - 85 ,(2)] =0. (3.8)
This polynomial equation of order N has a trivial solution = = 0 because 5‘1({,)(0) =
Sf,\f)(O) = N + 1. It describes the translational mode of the open N-chain with

a uniform displacement ¢, = q; # 0, n =1,2,...,N. We are interested in the
non-trivial solutions of (3.8"), the internal vibrational modes. If one defines

B(I::)(m) =: -2z Pj(\nl(w) (3.9
these internal /¥ — 1 modes are given by the zeros of P‘,(\’,"ll(w). Only for r = 1 do
the P,(f)( r) constitute a system of orthogonal polynomialsi. The first few of these

polynomials are listed in table 2.

Table 2 P{)(z), PP =0, PV =r.

n PUN(2)

1 “2rz4r+1

2 42z —dr(l+rjx+2r+ 1

3 —8r3z® + 8r2 (24 r)2? —4r(24+3r)z + 14 3r

4 167324 - 8r2(3r 4 5)2% + 4r(2r% + 12r + 7)2?
“203r+ 1)(2r 4+ 3z +3r+2

5 2A~16r4 25 4 1672 (2r + 3)z* — 1673 (r? + 57 + 3) 23
F4r(8r% + 157 + 5)z? ~ (dr + D)(dr + 3z +2r + 1

6 4t e® - 0273 (5r + Nx® 4+ 16,3 (8rF 4-30r + 17) st
—87(4r® + 4072 + 587 + 17) 23 + 8(8r> + 30r% + 221 + 3)2?
—4(8r2 4 1Sr +5)z + 3 + 4r

.1 The coefficient of z" in 557(z) is (=2)"rH"™), where #(n) = z(n+ 1) = 1. The monic 5'5:)
polynomials satisfy (3.4) with i) — & = r=h(st1) | AL A = 1p-1-k(") > g, Therefore,
#7(z) = rMn+2)/2 87 (1) defines a set of orthonormal polynomials.

1 Forn=0,1,... one has

P (2) = 2(1 = PO+ 02 PUY(z) - P, (2)

+(r-Dun+ 2@ -5 P=0  PV=r

with p(n+2) := h(n+2) - A(n+ 1).
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For periodic chains with an N-particle Fibonacci unit cell (type (c)) the band
structure is determined by the trace of the unit cell’s transfer matrix M, (see e.g.
[15), chapter 3.4). M, satisfies M? — (tr Mpy)My + 1 = 0. With (2.13) its
eigenvalues are therefore (A, A_ = 1)

Ay =Ty£4/TE -1 (3.10)

with Ty = T (Y/2,y/2) and Y,y given in (2.6). Vibrations occur for those z-
intervals (bands) satisfying IT‘,(J')(:c)| < 1 In this case A = A, = A_ = expif,
with real (M) () = cos™! Tf\’f)(:c) which is the integrated spectral function. The
differential spectral density (per particle) is then

(@) = |- (XN, 7)) | X(N,m) [ Nmf1 - (TN, D)) ()

for £ = 2/ X(N,r) out of any of the N bands whose maximal = value is X(N,r).
For » = 1 one recovers the (N-independent) spectral density of a monoatomic
chain G\(#) = 1/#/Z(1—&). This is due to the identity (d/dz)T(x) =
-nSM. (2). The band gaps are found from the condition |78(z)| > 1, and the
boundaries of the N bands are the solutions of

T (2) = Tyl — ree,1 - 2) = £1. (3.12)

The explicit form of these polynomials in terms of certain combinatorial numbers,
defined in [10] can be given. We shall, however, not quote this resuit here. (2.13)
shows that the leading coefficient of T is (~1)*22=1p5*) for n = 1,2,... . The
first few polynomials are listed in table 3. Only for » = 1 do they form a set of
orthogonal polynomialst.

The T,El)(a:) = T,(1 - z) are orthonormal in the interval [0,2] with weight
function w(2) = 2/n/x(2 - z) for n € N}.

We remark that in the literature on quasi-periodic problems of the Fibonacci type-
one usually considers the mth rational approximation to the golden mean, (), 1=

Frs1/Fm, m=12,..., with the Fibonacci numbers F,,. In this case the binary
sequence

A ()= |(n+ 1) F,/Frpl = 10 Fp/Foyl (3.13)
t Namely
T8, (2) = 2(1 = P D TEN(2) = T, (2) + (1 = P)za(n + 18, (=)

n=1,2,...

Tgr)(:c) =1 Tl(r)(::) =1l-rzx.

1 For N = 2 (3.11) reproduces the spectral density of the A B-chain {see e.g. [15], figure 1.6}. For N =3
a comparison with figure 1 of [16] has been made. There the abscissa label should read (w/wy,)? which
is £/2 in our notation for the AAB = ABA chain with r = 1. We have also checked figures 2-5 of

this reference.
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Table 3. T4 (z).

n ()

0 1

1 -rz+1

2 2rz? 314 r)z 41

3 =42z 4 dr(r 4 2)2? - 3(1+ 28}z + 1

4 8Pzt - B2 (34 )2 + Wr(r+ D2 =41+ 3r)z + 1
5 —167%x® + 1672 (3 + 2r)xt = 4r{4r? + 20r + 1) 22

+4(8r7 + 14r + 3)2? ~ 5(3r + )z + 1
6 32riz® — 6Ar (24 P25 + 1672202 4 14r 4 (1) 2t
=32r(3r2 + Br+ 32 + 2(M4r? + 52r + 922 - 2(2r + Dz + 1

becomes periodic with period ¥, .,. The unit cell’s transfer matrix is then Mf;.",;) +1

defined like in (2.8) but with A(n) in (2.5) replaced by A(™)(n). These matrices
differ, in general, from M, .., but one can prove the following:

A m)
=

I . =Tp.,, m=1,2,.... (3.19)
This result follows immediately from

(R ()}, 57 O (R} (3.15)
where (O means cyclic equivalence. For example, if m = 3 one has {1,1,0} O
{1,0,1}, and for m = 1,2,4 both sequences are identical. In fact, the identity holds
for all even m. For odd m # 1 a cyclic rearrangement is necessary. The proof of
(3.15) will not be reproduced here. It is found in the preprint version of this work.
Due to the identities (3.14) the band structure of type-(c) Fibonacci chains coincides
with the one of periodic chains based on the sequence h{™)(n) with n € Z and

e mem a2t o1 AT

—~ BT O rnl
m € N if one speciaiizes N = £, ;.

4. Identities from quasiperiodicity

One of the distinguished properties of the binary Fibonacci sequence A(n) (2.2) is
(see e.g. [3a)])

Vk24:h(n+ F) = h(n) 1<ng F,. (4.1)

The same quasiperiodicity law is obeyed by the Y (n) sequence defined in (2.5). An
immediate consequence of (4.1) is the matrix identity

Ve d: Myp = (Mg )? 4.2
2F% Fy

where M, was defined in (2.8). This, together with the det M, = 1 condition and
the T, polynomials (2.13), is equivalent to the following four identities, valid for all
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k=4,5,
SZF* — 2T.Fk SFk -1 (4.30)
Sopy-2=2Tg Sp, _p+1 (4.3b)
S'ZF;,—I = 2TF;; S‘Fk—l (4'36)
SZF*—]. = 2TFkSFk-1 (4‘3d)

where the arguments of the S and $ polynomials are Y,y and those of the T'
polynomials are Y/2, y/2. The last two identities can be used to factorize certain

S, and S, polynomials. (4.3b, d) are also valid for k = 2,3. Quasiperiodicity (4.1)
also implies

Vi
k

4 n= 1125 R ] Fk : Sn-{-Fk = Y(n)Sﬂ+Fk-1 - Sﬂ+F;,--2 (440)
v 4

VoW

n=0,1,...,F ~-1: Sn+F., =Y(n+ 1).&3'“_“%_1 — S'n_,_Fk_z. (4.4b)
Putting n = F3 in (4.4a), using (4.3a2) and (4.3d), yields for k& > 4

SEF.,—:! = TFJ; SF;.-—:! + 1. (4.5)
Putting n = F, — 1 in (4.4a) produces for k > 4

SzF,,—3 = QTFp‘ SF)‘—3 + Y(Fk - 1) * (4'6)
This can be continued for n = F;, — j, 7=0,1,...,F, — 1. One finds for k > 4

Syp,_; = 2Tg, Sp, _; + St} 4.7

2Fk~—J Fy Fk""] -2 ( * )

where the ‘retro’-polynomials si¥ satisfy

S{F = Y(F, -n)siH —sifL n=12,...
(4.8)
sth=o s =

which shows that they are, for each k& > 4, also two-variable generalizations of
Chebyshev's S, polynomials. For (4.7) one only needs S,{,k} forn=12,...,F -3
We give an example for k=5, S =¥ = 5, Si%) = Y2 — 1. Thus

Syo= 2T, S;—1

S, = 2T S,

Sg= 2T S;+1 (4.9)
S;= 2T, S, + S,

Se= 2Ty S, +(¥Y*-1).
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Similarly, one derives from (4.4b), together with the inputs (4.3b) and (4.3¢c), the
following family of identities:

k24 i=12, . Fp: 8y ;=2Tp Sk + S{k} (4.10)

with the ‘retro’ S5} polynomials defined by
@.11)

Only the ones with » = 1,2,...,F, — 2 are needed in (4.10) for given k > 4.
(4.11) defines more two-variable generalized S, (y) polynomials.
From (4.7) and (4.10) the following identities among the T,,s resuit:

. k
k24 j=0,1,...,F=2:2T5 2T 5 _jy=2Typ_; + T;) - (Y — )RS
(4.12)

with the ‘excess’-polynomials

k k
R =8 4 s (4.13)

defined by

One should remember that the arguments of all polynomials are Y,y except for
the 7. s whose arguments are Y /2, y/2. For vanishing excess-polynomials R the
identities (4.12) are of the type

2Tn 2T - 2( n+m + Tin-—m[) (415)

well known for the one-variable T, polynomials (trigonometric identities). This is,
for instance, the case for 7 = 0, when R{"} = Ofor alt & > 4. Thus

Typ, +1=2(Tf,)? (4.16)
which can be rewritten as
Typ, —1=2(Tp, —1)(Tp, +1). (4.16")

These two equations show that N = 2 F, chains of type (c) for k = 4,5,... have
a band degeneracy. Indeed, the Fj zeros of Ty, are double (—1) values of T,p .
Thus F;, gaps shrink to a point, and the 2F} values (+1) of T,y coincide with
the edges of the F, bands of the N = F; chain of type (c). Therefore the band

structure for N = 6,10,16, ... chains is the same as the one for N = 3,5,8,.
chains, reqnf-rnvelv In each case the unit cell is doubled, deecnhmo the same rhmn

For j = 1 one has

R{k}=.§{k}={0 for k = 2: i22
0 0 1 for k=2i+1 iz2
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due to the fact that h(Fy) = 1, h{F,;,,) = 0. Therefore,
£=1121"' ‘-‘2TF'2,' 2TF3.-—I =2('J12Fg;—-1 +j’1>' (4'17}

For 1 = 1 this is trivial. For odd % > 4 there i5 an excess of —(Y — y).
For 5 = 2 one finds

k24:2Tp 2T5_y = ATop2 + Tp) (4.18)
due to the fact that &, can never be the bigger member of an A-pair (see [10] for
the definition).

The analysis of three consecutive {h{n)} members, the last one being h( F,),
shows that also for j = 3 no excess polynomial is present, i.e.

k24 2T 2T 3 = UTop s+ T3). (4.19)
For higher j the analysis becomes more involved. All the above derived identities

hold for all Y, y, therefore especially for chains with substitution (2.6}.

Identities for the open /N <+ 1 chain polynomials Pf\}' } follow from the results 4.7
and {4.10}. Onc has

k>4, j=0,1,...,F -2 : PR _._(x)=20{ =) P, (=) +p{1¥(x)
(4.20)
with the definition

(-22)p 0P (2) 1= (SHF) - s15) - BER) 4 My (4.21)

where || signals substitution of Y,y according to (2.6). For j = 0 one finds
p@_"l){k} = 0, which shows that the eigenfrequencies of the 25, — 1 internal vibra-
tions of the open N = 2F) chain ate for & = 4,5, ... given by those of the NV = &
chain and the zeros of TS

5. ldentities from logotomy

In the seminal works {1a, b] the identities
k286 ¢ Tp, =2Tr, _y Tru_p ~ Truy, 5.3)

were used as recursion relations for the Fibonacci-numbered trace polynomials. This
is a specia) case of a more general class of identities which can be inferred from the
basic formulae valid for any SL{2, B) matrices A, P, { (cf [3a)):

trA=trA™ (5.2a)
16(PQ) + 1te(PQ Yy =2(Ltr P)(3tr Q). (5.2b)

In fact, (5.2a} follows from (5.2b) by putting P = 1. Observe the symmeiry P — Q.
Consider the matrix-‘word’ M, defined in (2.8) for n > 1 over the two matrix
‘alphabet’ R, and R,, given in (2.7), and put M, = 1. The word M, is cut
into two pieces M,,,, = W, M, or M, = W, M,, where W, is a word of
tength n. The identity (4.15), which reduces to a simple trigonometric identity in the
one-variable case Y = y, also remains valid in the two-variable case whenever one
of the following conditions is satisfied:



Characteristic polynomials of Fibonacci chains 5407

Condition 1.
Mu+m=Wan n?m?O

w. O M, (5.32)

W (M) O M,_,,
Condition 2.
Moym =W M, nzmz0

W, O M, (5.30)

M’ﬂ.(Wm)—l O Mn—m "

The symbol O stands for cyclic equivalence. Note that (M, )~ or (W,,)~! are no
words in the sense defined above. In order that the last conditions in (5.34, b) be
satisfied it is necessary that all R;! and Ry matrices are eaten up by corresponding
R, and R, matrices. The proof is a simple consequence of identity (5.2b). For the
first condition put P=W,, Q = M, and for the second one P=W,,, Q= M,
with tr PQ~! = tr QP~1. We give three examples. First consider the case m = n.
Both conditions need W, = M. Therefore, (4.15) holds whenever M,, = (M, )2
From the quasiperiodicity of the {h(n)} sequence this happens exactly for n = F
for k > 4. Thus we recover identity (4.16); secondly consider Mg = Mg, . Mg, |
which holds for &£ = 2, and > 4, and check (5.3b):

MFh—l(MFk—:)_l = MFk-sMFk-—Q(MFk—Q)_l = MFJ:—-! = M(Fk-x—Fk—a)

for £ = 3 or > 5. This is how the original identities (5.1) are proved. As a third
evample take n = 6 and m = 2 and check condition (5.30), M, = W, M. and W, =

R\ Ry O RoR, = My Mg(W,)™! = Ry RR{RR,R;' R' O R{RyR, = M,,
and therefore
T,T, - H(Ty+ Ty) =0 (5.4)
which 5 not covered by the identities given in the last section. This i, in fact, a
special case of
2Tn TZ - (Tn+2 + Tn—z) =0 (55)
valid if n + 1 or n is of the form B(B(p)) + 1 for some p € N, where the Wythoff
sequence is defined by B(n) = |ny?| (see e.g. [10]). The first values are n =
5,6,13,14,18,19,....
We close this section with the quantity which was used in the original works [la,
b] as an ‘invariant’ under recursion formula (5.1). We use the form given in [3a]:
2= %tr MF..+1MF"ME:+1M;: - %
= Ltr (Mg, MF..+1]2 =3 tr(Mp (Mg, Mg, 1)
= 2
=T, + Tk, + T2 -2T5, ., Tr,, Tr, = 3(Y - ). (5.6)
This shows the n-independence of A% for all n 2 2. (5.2b) and the composition
law Mp . = Mg _ Mg for n > 3 were used. (5.1) and the quasiperiodicity
identity (4.16) allows one to rewrite A? as
A= _TF,..,_, TF,. + %(TzF,.J,, + TzF,.+l) = %(Y - y)g (5-7)
for n 2> 3 which can also be obtained via (4.12) for k=n+3, j =2F, ;.



5408 W Lang

6. Generating functions for S, and S, polynomials; S, (Y,y) and 5, (Y,y) in
terms of {5, }

We first define the generating function for the S, (Y, y) polynomials

G(z;Y,y) =Y 8, (Y,y)2". 6.1)

n=0

The recurrence relation (2.11a) yiclds

G(nY,y)= {1+ (Y -9)2G (Y, (L -yz+ 2% (62)

where the generating function for a subsequence of the S_s is introduced, namely

Gian(3iYsw) = 3 h(n + 1S,(¥,9)2 ZSA(,) (Y, 9)2*07h (63)
n=0

In the last step we used a property of {kh(n)}, namely h(n) = 1 iff n = A(!)

for 1 € N, where A-numbers are defined by A(l) := |ly| (see [10] for details

on Wythoff numbers A(!) and references) Therefore, G,_,, generates S, for
L=023578 Ac a checl we nut in fﬂ ')\ Y = # to ghtain

— Wy dwyarywy Fyiiy e o Fv o W v iear

G(z1y) = (1 —yz + 2%) ZS (y)z" (6.4)

the well known generating function for Chebyshev’s S, (y) polynomials. Due to
identities for Wythoff sequences (see e.g. [10], equation (2.5)) one can also write

Ga-1(z:Y,y) = Gz Y, y) + Gup(% Y, v) (6.5)

where Gy generates all S, with k = B(m) := m 4+ A(m) for m € N,, ie.
k=0,2,57,...,and G, generates all S, with k = A(B(m)) for m € N, ie.
k=3,811,16,.... Indeed, A(l)—1is either of the form A(A(m)+1)—1=B(m)
with m € Ny, or of the form A(B(m)+ 1) — 1=AB(m) with m € N. This holds
because the natural numbers decompose into two disjoint and exhaustive sets, the A-
and B-numbers. Because G = G4 + Gz=G 4,4 + G,p + Gp where we include,
by convention, 0 as a B-number, (6.5) can be written as G 4_;)=G — G4, Due to
G 44 = Gp-y) one may then replace (6.2) by

G(z Y, y) = {1 ~(Y - y)2Gm_1)(z Y, 1)}G(z;Y). (6.57)
In a similar way one derives from (2.11b) the result

G(z; Y, ) = (1 + (Y = 9)2Ga_)(2 Y, 1)} G2 y) (6.6)
for the generating functions

Gz Y,y =) S (Y p)=" 6.7)

n=0

Gay(z Y1) =Y h(n+2)5,(Y,9)2" =) S40)a(V,0)22 072 (68)

n=0 =2
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We continue with formulae which express the two-variable Chebyshev polynomials
S.(Y,y) and S «(Y,y) in terms of ordinary Chebyshev polynomials S, (y) and
powers of Y — y. They can be derived from (6.2) (respectively (6.6)). We skip all
details and only quote the result which involves z{n) which counts the number of
(positive) A-numbers less or equal to n. It is given by (3.3) as 2(n) = A(n + 1) —
(n+1).

For n = (0,) 1,2,... one finds

z(n}
S, (Y, 1) =S, () + (Y - 9)s, 1 (¥) (6.9a)
k=1
z{n} -1 12—-1
Sap(W =D Sucaay(®) D Sagy-am-1(¥) Y. Sagy-age-1(¥)
L=k la=k-131 la=k—2321
leea -1
Y Saton-a-1(3)Sagy-1(v)- (6.9}
fa=1

For k = 1 one has to put I, — 1 = 2(n) and A(ly) = n+1in s, ;(y). The
formula for .§n(Y, y)is

X z{n41)-1
5., 1) =S+ Y (Y -9 &) (6.10a)

k=1

z(n+1) Tim1—1
én,k(y)E E Sp4i- A(Ig)(y)(]___[ Z SA(I,--l)-l-A(i:')(y))

le=k+1 §=11l;=k—j+122
X Sapte_yy-2{¥) - (6.10b)

For k& = 1 the product should be replaced by 1. For n = 0,1 only the first term of
(6.10a) is present. We next quote the results for the T, polynomials (2.13). Their

generating function is related to those of the S and S polynomials:
Gr(zY,y): }:T ( )z“ = %[1 + G(2;Y,y) - 22G(z; Y, )], (6.11)

Using (6.10) and (6.11) one finds

z{n)

T, (%,/- %) =T, (g) + D (Y =)t n(¥) (6.12a)
mc=l

tam () = 380 m(¥) = 852 m ()] (6.12b)

In the appendix the results for n = 0(1)6 are listed.

This polynomial expansion in powers of ¥ —y has an interesting application in the
case of Fibonacci chains of type (c). For small relative mass difference u=1-M/m
one can compute the 2N band boundaries in lowest non-trivial order. Details will be
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published elsewhere. We quote the result which is given in terms of the quantities
f(N,k), k=1,2,...,N —1 defined by

2(N) 2{(N)-1

= 3" sin? L in? Tk
f(N, k) := gsm ((A(l) 1) N) + h(N) g sin (A(I) N)
sz-—]\ -1 k‘
™
+ E Zsm ([A(t)—A(m)]W). (6.13)
and
W(N,k}=,/1-4f(N,k)}/2%N). (6.14)

Up to first order (indicated by the tilde) in 2 = 1—r, the band boundaries of periodic
chains with an N -particle unit cell are are given by

ﬁ_g_?i ) = V- 1)(1+ Z(N)[lzi:W(N k)ﬁ (6.15)

for k=12,...,N -1 n{""" = 0 and the maximal band value

) = 2(1 Tpici )) . (6.16)

£~1 are the zeros of Sy_,[2(1 ~ «)] given by (3.6).
Observe that f( NV, k) obeys

fIND=Ff(N,N=1) 1=1,2,..., (6.17)

N
2

Due to this symmetry and the fact that £ §N“1) +£S§’r\_r_'}1) = 2 for the given values of
I, one finds for the total bandwidth of periodic chains with N -particle unit cell of the
Fibonacci type (in units of z = w?/2w? and first order in ¢ = 1 - 7}

N=2m meEN:

a9 =2{1 - 22 (23 Wizm, b - Wizm,m)) ~ ]}
= (6.182)

AW = 2[1 - i(-i:l—tll(mmévv(zm +1,k)— u)] . (6.185)
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7. Concluding remarks

(i) The spectral measure for the orthogonal polynomials S,(f)( x) and the associated
ones S'Ef)(a:) can, for fixed r, in principle, be found wa Stieltjes’ inversion formula
(cf [11] and [17]) from the continued S-fraction related to the recurrence relation.
Work along these lines is in progress.

(ii) The limit N — co for the various chains can be studied, and it is expected
to recover the rigorous results for the Fibonacci Hamiltonian mentioned in the intro-
duction.

In the application for chains with small relative mass difference the first two
terms of f(N, k) given by (6.13) do not contribute to W{N, k) of (6.14) for k =
1,2,..., N —1in this limit. For the last term, the double sum f, (N, k), it is difficult
to find a sensible estimate,
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Note added in proof. One of the referees pointed out reference [18]. There one can find an excellent
summary of the method of orthogonal polynomials in connection with second-order difference equations
with periodic coefficients. In the general discussion one can identify the polynomials o, and B, /12

with our monic S, and $,_,. The polynomials © v are not directly related 1o our Ty of (2.13). we
stress that the Ty polynomials (not the © ) are relevant for the chain problem. Our formula (3.11)
for the differential spectral density is similiar to equation (2.9) of [18]. The measure for the N-periodic

orthogonal polynomials {sﬁ.’“)} can be computed along the lines leading to (5.10) of [18]. None of the
examples considered there corresponds to the Fibonacci chains.

Appendix. Some T, (Y /2,y /2) formulae
Equation (6.12) with (6.9) and (6.10b) yields (S,(y) = 1)

n=10,2(0)=0:

To(%, %) =T, (%) =1 (A1)
n=1,2(1)=1:

Tl(g,_§)=ﬂ(\§)+%(v-y)=§ (A2)
n=2z(2)=1:

(5.4) =1 (4) + 50 -nsitw = 5vy-1 (A3)
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n=3,2(3)=2:
Y v Y 1
T(5:3) = 1Y) + (¥ - 05:0 + 50 8,00 = b= (v + 3y)
(A4)
n=4,z(4)=3:
Y y Y 1
L\ 53 ) =Tl 5 ) + 5V =9)[25:() + 5,(1) 5, (v) - 8,(v)]
+ 1Y ~ 1)’ [S{() + 25,(p)] + (Y - ¥)*S,(v)
=Yy - (Y?+Yy)+1 (AS)
n=25,2(5)=3:
T, Yy =T (¥ +l(Y—y)(S + 52+ 8,8, - 57— S,)
s\l5 5 sl 5 5 4 2 391 1 2
+ (Y - ¥ (35,5, — 8)) + Wy — y)*S?
=3V - (2% + YY) + By +9) (A6)
n==6,z(6)=4:
Y
Ts(zg,%) =T, (%) + (Y — y)(Ss + 5,5, — 5,5,)
+ 3(YV - y)Y (25,5, +3SI + 5, - §%)
+ 2(Y - )25, 8, + HY ~ y)*s?
=3V - 2V + V) + (2Yy + 2V 4+ LyP) - 1. (A7)

The missing .5, arguments are always y.
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